406 research outputs found

    Three-Dimensional Ionisation, Dust RT and Chemical Modelling of Planetary Nebulae

    Get PDF
    The assumption of spherical symmetry is not justified for the vast majority of PNe. The interpretation of spatially-resolved observations cannot rely solely on the application of 1D codes, which may yield incorrect abundances determinations resulting in misleading conclusions. The 3D photoionisation code MOCASSIN (Monte CAarlo SimulationS of ionised Nebulae) is designed to remedy these shortcomings. The 3D transfer of both primary and secondary radiation is treated self-consistently without the need of approximations. The code was benchmarked and has been applied to the study of several PNe. The current version includes a fully self-consistent radiative transfer treatment for dust grains mixed within the gas, taking into account the microphysics of dust-gas interactions within the geometry-independent Monte Carlo transfer. The new code provides an excellent tool for the self-consistent analysis of dusty ionised regions showing asymmetries and/or density and chemical inhomogeneities. Work is currently in progress to incorporate the processes that dominate the thermal balance of photo-dissociation regions (PDRs), as well as the formation and destruction processes for all the main molecular species.Comment: 3 pages, to appear in Proc. IAU Symp. 234, Planetary Nebulae in Our Galaxy and Beyond (3-7 Apr 2006), eds. M.J. Barlow & R.H. Mendez (Cambridge Univ. Press

    The clearing of discs around late type T Tauri stars: constraints from the infrared two colour plane

    Get PDF
    We have undertaken SED modeling of discs around low mass T Tauri stars in order to delineate regions of the infrared two colour plane (K - [8] versus K - [24]) that correspond to discs in different evolutionary stages. This provides a ready tool for classifying the nature of star-disc systems based on infrared photometry. In particular we demonstrate the distinct loci followed by discs that undergo `uniform draining' (reduction in surface density by a spatially uniform factor) from those that clear from the inside out. We draw attention to the absence of objects on this `draining locus' in those star forming regions where the 24um sensitivity would permit their detection, as compared with the ~20 objects in these regions with colours suggestive of inner holes. We thus conclude that discs predominantly clear from the inside out. We also apply our classification of the infrared two colour plane to stars of spectral type M3-M5 in the IC 348 cluster and show that some of its members (dubbed `weak excess' sources by Muzerolle et al 2010) that had previously been assumed to be in a state of clearing are instead likely to be optically thick discs in which the dust is well settled towards the mid-plane. Nevertheless, there are many discs in a state of partial clearing in IC 348, with their abundance (relative to the total population of disc bearing stars) being around four times higher than for comparable stars in Taurus. However, the number of partially cleared discs relative to the total number of late type stars is similarly low in both regions (10 and 20 % respectively). We therefore conclude that IC 348 represents a more evolved version of the Taurus population (with more of its discs being highly settled or partially cleared) but that the timescale for clearing is similarly short (a few times 10^5 years) in both cases.Comment: 9 pages, 6 figures, accepted, MNRA

    The imprint of photoevaporation on edge-on discs

    Full text link
    We have performed hydrodynamic and radiative transfer calculations of a photoevaporating disc around a Herbig Ae/Be star to determine the evolution and observational impact of dust entrained in the wind. We find that the wind selectively entrains grains of different sizes at different radii resulting in a dust population that varies spatially and increases with height above the disc at radii > 10 AU. This variable grain population results in a 'wingnut' morphology to the dust density distribution. We calculate images of this dust distribution at NIR wavelengths that also show a wingnut morphology at all wavelengths considered. We have also considered the contribution that crystalline dust grains will have in the wind and show that a photoevaporative wind can result in a significant crystallinity fraction at all radii, when the disc is edge-on. However, when the disc's photosphere is unobscured, a photoevaporative wind makes no contribution to the observable crystallinity fraction in the disc. Finally, we conclude that the analysis of extended emission around edge-on discs could provide a new and independent method of testing photoevaporation models.Comment: 8 pages, 6 figures, accepted for publication in MNRA

    Radiative Transfer in Star Formation: Testing FLD and Hybrid Methods

    Full text link
    We perform a comparison between two radiative transfer algorithms commonly employed in hydrodynamical calculations of star formation: grey flux limited diffusion and the hybrid scheme, in addition we compare these algorithms to results from the Monte-Carlo radiative transfer code MOCASSIN. In disc like density structures the hybrid scheme performs significantly better than the FLD method in the optically thin regions, with comparable results in optically thick regions. In the case of a forming high mass star we find the FLD method significantly underestimates the radiation pressure by a factor of ~100.Comment: 4 Pages; to appear in the proceedings of 'The Labyrinth of Star Formation', Crete, 18-22 June 201

    3D Photoionisation Modelling of NGC 6302

    Full text link
    We present a three-dimensional photoionisation and dust radiative transfer model of NGC 6302, an extreme, high-excitation planetary nebula. We use the 3D photoionisation code Mocassin} to model the emission from the gas and dust. We have produced a good fit to the optical emission-line spectrum, from which we derived a density distribution for the nebula. A fit to the infrared coronal lines places strong constraints on the properties of the unseen ionising source. We find the best fit comes from using a 220,000 K hydrogen-deficient central star model atmosphere, indicating that the central star of this PN may have undergone a late thermal pulse. We have also fitted the overall shape of the ISO spectrum of NGC 6302 using a dust model with a shallow power-law size distribution and grains up to 1.0 micron in size. To obtain a good fit to the infrared SED the dust must be sufficiently recessed within the circumstellar disk to prevent large amounts of hot dust at short wavelengths, a region where the ISO spectrum is particularly lacking. These and other discoveries are helping to unveil many properties of this extreme object and trace it's evolutionary history.Comment: 8 pages, 4 figures; for the proceedings of "Asymmetric Planetary Nebuale IV," R. L. M. Corradi, A. Manchado, N. Soker ed

    Ionization--induced star formation V: Triggering in partially unbound clusters

    Full text link
    We present the fourth in a series of papers detailing our SPH study of the effects of ionizing feedback from O--type stars on turbulent star forming clouds. Here, we study the effects of photoionization on a series of initially partially unbound clouds with masses ranging from 10410^{4}--10610^{6}M⊙_{\odot} and initial sizes from 2.5-45pc. We find that ionizing feedback profoundly affects the structure of the gas in most of our model clouds, creating large and often well-cleared bubble structures and pillars. However, changes in the structures of the embedded clusters produced are much weaker and not well correlated to the evolution of the gas. We find that in all cases, star formation efficiencies and rates are reduced by feedback and numbers of objects increased, relative to control simulations. We find that local triggered star formation does occur and that there is a good correlation between triggered objects and pillars or bubble walls, but that triggered objects are often spatially-mixed with those formed spontaneously. Some triggered objects acquire large enough masses to become ionizing sources themselves, lending support to the concept of propagating star formation. We find scant evidence for spatial age gradients in most simulations, and where we do see them, they are not a good indicator of triggering, as they apply equally to spontaneously-formed objects as triggered ones. Overall, we conclude that inferring the global or local effects of feedback on stellar populations from observing a system at a single epoch is very problematic.Comment: 17 pages, 11 figures (mostly degraded to get under the submission size limit), accepted by MNRA

    Ionizing feedback from massive stars in massive clusters III: Disruption of partially unbound clouds

    Full text link
    We extend our previous SPH parameter study of the effects of photoionization from O-stars on star-forming clouds to include initially unbound clouds. We generate a set of model clouds in the mass range 104−10610^{4}-10^{6}M⊙_{\odot} with initial virial ratios Ekin/EpotE_{\rm kin}/E_{\rm pot}=2.3, allow them to form stars, and study the impact of the photoionizing radiation produced by the massive stars. We find that, on the 3Myr timescale before supernovae are expected to begin detonating, the fractions of mass expelled by ionizing feedback is a very strong function of the cloud escape velocities. High-mass clouds are largely unaffected dynamically, while lower-mass clouds have large fractions of their gas reserves expelled on this timescale. However, the fractions of stellar mass unbound are modest and significant portions of the unbound stars are so only because the clouds themselves are initially partially unbound. We find that ionization is much more able to create well-cleared bubbles in the unbound clouds, owing to their intrinsic expansion, but that the presence of such bubbles does not necessarily indicate that a given cloud has been strongly influenced by feedback. We also find, in common with the bound clouds from our earlier work, that many of the systems simulated here are highly porous to photons and supernova ejecta, and that most of them will likely survive their first supernova explosions.Comment: 14 pages, 13 figures (some degraded and greyscaled), accepted by MNRA

    X-ray Photoevaporation-starved T Tauri Accretion

    Full text link
    X-ray luminosities of accreting T Tauri stars are observed to be systematically lower than those of non-accretors. There is as yet no widely accepted physical explanation for this effect, though it has been suggested that accretion somehow suppresses, disrupts or obscures coronal X-ray activity. Here, we suggest that the opposite might be the case: coronal X-rays modulate the accretion flow. We re-examine the X-ray luminosities of T Tauri stars in the Orion Nebula Cluster and find that not only are accreting stars systematically fainter, but that there is a correlation between mass accretion rate and stellar X-ray luminosity. We use the X-ray heated accretion disk models of Ercolano et al. to show that protoplanetary disk photoevaporative mass loss rates are strongly dependent on stellar X-ray luminosity and sufficiently high to be competitive with accretion rates. X-ray disk heating appears to offer a viable mechanism for modulating the gas accretion flow and could be at least partially responsible for the observed correlation between accretion rates and X-ray luminosities of T Tauri stars.Comment: 4 pages 3 figures, ApJ Letters, in pres

    The timing and location of dust formation in the remnant of SN 1987A

    Get PDF
    The discovery with the {\it Herschel Space Observatory} of bright far infrared and submm emission from the ejecta of the core collapse supernova SN\,1987A has been interpreted as indicating the presence of some 0.4--0.7\,M⊙_\odot of dust. We have constructed radiative transfer models of the ejecta to fit optical to far-infrared observations from the literature at epochs between 615 days and 24 years after the explosion, to determine when and where this unexpectedly large amount of dust formed. We find that the observations by day 1153 are consistent with the presence of 3×\times10−3^{-3}M⊙_\odot of dust. Although this is a larger amount than has previously been considered possible at this epoch, it is still very small compared to the amount present in the remnant after 24 years, and significantly higher dust masses at the earlier epochs are firmly ruled out by the observations, indicating that the majority of the dust must have formed at very late times. By 8515-9200 days after the explosion, 0.6--0.8\,M⊙_\odot of dust is present, and dust grains with radii greater than 2\,μ\mum are required to obtain a fit to the observed SED. This suggests that the dust mass increase at late times was caused by accretion onto and coagulation of the dust grains formed at earlier epochs. These findings provide further confirmation that core collapse supernovae can create large quantities of dust, and indicate that the reason for small dust masses being estimated in many cases is that the vast majority of the dust forms long after most supernovae have been detectable at mid-infrared wavelengths.Comment: 13 pages, 16 figures. Accepted for publication in MNRA
    • …
    corecore